
© Copyright Ian D. Romanick 2008

22-August-2008

VGP393C – Week 6

⇨ Agenda:
­ Atomic Operations
­ Non-blocking Algorithms
­ Windows threading API, part 2

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ What is an “atomic operation”?

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ What is an “atomic operation”?

⇨ What does this mean?

A “set of operations that can be
combined so that they appear to the rest
of the system to be a single operation...1”

1 http://en.wikipedia.org/wiki/Atomic_(computer_science)

http://en.wikipedia.org/wiki/Atomic_(computer_science)

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ What is an “atomic operation”?

⇨ What does this mean?
­ An instruction that performs a read-modify-write cycle

that cannot be interrupted or executed out-of-order
with respect to other processors in the system

­ Think of it as a really small, hardware implemented
critical section

A “set of operations that can be
combined so that they appear to the rest
of the system to be a single operation...1”

1 http://en.wikipedia.org/wiki/Atomic_(computer_science)

http://en.wikipedia.org/wiki/Atomic_(computer_science)

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Example: TAS instruction on 68000
­ Reads a byte from a memory location
­ Writes the value back with the high bit set
­ Tests the original high bit and sets the condition

codes

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Example: TAS instruction on 68000
­ Reads a byte from a memory location
­ Writes the value back with the high bit set
­ Tests the original high bit and sets the condition

codes Performed with
the bus “locked”

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Example: TAS instruction on 68000
­ Reads a byte from a memory location
­ Writes the value back with the high bit set
­ Tests the original high bit and sets the condition

codes

⇨ Example: XCHG instruction on 8086
­ Reads a byte from a memory location
­ Writes a byte from a register to the memory location
­ Stores the byte from memory in the register

Performed with
the bus “locked”

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Example: TAS instruction on 68000
­ Reads a byte from a memory location
­ Writes the value back with the high bit set
­ Tests the original high bit and sets the condition

codes

⇨ Example: XCHG instruction on 8086
­ Reads a byte from a memory location
­ Writes a byte from a register to the memory location
­ Stores the byte from memory in the register

Performed with
the bus “locked”

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Spin-lock using XCHG on x86:
 movl %eax, $1
1: lock xchg %eax, [%ebx]
 test %eax, %eax
 jnz 1

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Spin-lock using XCHG on x86:
 movl %eax, $1
1: lock xchg %eax, [%ebx]
 test %eax, %eax
 jnz 1

­ The lock prefix is added on later x86 processors and
allows other instructions to be atomic

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Modern processors support a variety of atomic
operations

­ Increment / decrement
­ Add / subtract
­ And, or, xor, etc.
­ Exchange
­ Compare and swap

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Compare-and-swap is extremely useful, if a bit
complex:

bool cmpxchg(int *mem, int compare, int new_value)
{
 if (*mem == compare) {
 *mem = new_value;
 return true;
 } else {
 return false;
 }
}

­ We'll see how this is useful in a bit...

© Copyright Ian D. Romanick 2008

22-August-2008

Atomic Operations

⇨ Windows API provides interfaces to many of
these common operations:

­ InterlockedIncrement – Increment a 32-bit int

­ InterlockedDecrement – Decrement a 32-bit int

­ InterlockedExchangeAdd – Add a value to a 32-
bit int and store the result

­ InterlockedCompareExchange – Compare
memory to a reference value and set memory to new
value if it matches the reference

­ Also InterlockedCompareExchangePointer and
InterlockedCompareExchange64

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Atomic operations can be used to implement
certain algorithms without other synchronization

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Shared counter
­ A counter that can be incremented, decremented, and

tested
­ This is how we test for completion in the Mandelbrot

generator

­ The increment, decrement, and test operations could
be protected using a lock

­ Or...

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

class shared_counter {
public:
 void init(int value)
 {
 count = value;
 }

 bool add(int value)
 {
 return (InterlockedExchangeAdd(& count, value) == 0);
 }

private:
 volatile int count;
};

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Most non-blocking algorithms look fairly similar:
void non_blocking_foo(volatile int *x)
{
 int old_value, new_value, ref_value;

 do {
 old_value = *x;
 new_value = do_something(old_value);
 ref_value =
 InterlockedCompareExchange(x, new_value,
 old_value);
 } while (ref_value != old_value);
}

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Non-blocking singly-linked list enqueue:
void list::enqueue(node *n)
{
 node *old;

 do {
 n­>next = head;
 old =
 InterlockedCompareExchangePointer(&head,
 n,
 n­>next);
 } while (old != n­>next);
}

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Non-blocking singly-linked list dequeue:
node *list::dequeue(void)
{
 node *old, *node, *next;

 do {
 node = head;
 next = node­>next;
 old =
 InterlockedCompareExchangePointer(&head,
 next,
 node);
 } while (old != next);

 return node;
}

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Non-blocking singly-linked list dequeue:
node *list::dequeue(void)
{
 node *old, *node, *next;

 do {
 node = head;
 next = node­>next;
 old =
 InterlockedCompareExchangePointer(&head,
 next,
 node);
 } while (old != next);

 return node;
}

WRONG!

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

First thread:
fetch head → &A
fetch A.next → &B

cmpxchg(&head, &B
&A) → success!

Second thread:

pop A; pop B; push A;

A B Ch

A Ch

Bh

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

First thread:
fetch head → &A
fetch A.next → &B

cmpxchg(&head, &B
&A) → success!
FAIL!

Second thread:

pop A; pop B; push A;

A B Ch

A Ch

Bh

Points at
garbage!

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ For singly-linked lists, Windows provides
SLIST_HEADER

­ InitializeSListHead
­ InterlockedPushEntrySList
­ InterlockedPopEntrySList
­ InterlockedFlushSList
­ Only available on Windows XP / Windows Server

2003 and later

© Copyright Ian D. Romanick 2008

22-August-2008

Non-blocking Algorithms

⇨ Very active area of research
­ Search for “nonblocking algorithm”

⇨ Generally a very hard problem
­ Be wary of race conditions

© Copyright Ian D. Romanick 2008

22-August-2008

Break

© Copyright Ian D. Romanick 2008

22-August-2008

Thread Pools

⇨ Programs using the Fork / Join pattern often
need to dynamically create and destroy lots of
threads

­ High performance overhead
­ May spend more time managing threads than doing work!

­ If threads interact with the outside work (perform I/O)
statically creating a few threads and a work queue
may not be sufficient

­ Here a thread pool is the answer

© Copyright Ian D. Romanick 2008

22-August-2008

Thread Pools

⇨ A group of threads are created that feed off a
work queue

­ If the queue gets too long, more threads are created
­ If the queue is empty for a long period, threads are

destroyed

© Copyright Ian D. Romanick 2008

22-August-2008

Thread Pools

⇨ Several important factors in the algorithm1:
­ create too many threads and resources are wasted

and time also wasted creating the unused threads
­ destroy too many threads and more time will be spent

later creating them again
­ creating threads too slowly might result in poor client

performance (long wait times)
­ destroying threads too slowly may starve other pro-

cesses of resources

1 http://en.wikipedia.org/wiki/Thread_pool_pattern

http://en.wikipedia.org/wiki/Thread_pool_pattern

© Copyright Ian D. Romanick 2008

22-August-2008

Thread Pools

⇨ Thread pools are generally difficult to implement
correctly and tune

­ Starting with Windows 2000, the system provides one
for you

­ Add new tasks with:
BOOL QueueUserWorkItem(
 LPTHREAD_START_ROUTINE func,
 PVOID cointext,
 ULONG flags);

­ I/O threads should set WT_EXECUTEINIOTHREAD in
flags

­ See the MSDN entry for more details

© Copyright Ian D. Romanick 2008

22-August-2008

Thread Priority

⇨ Each thread has a priority
­ Windows always runs “ready” threads with the highest

priority first
­ High priority threads can hog the system and starve

low priority threads

© Copyright Ian D. Romanick 2008

22-August-2008

Thread Priority

⇨ Set a thread's priority:
BOOL SetThreadPriority(
 HANDLE thread,
 int new_priority);

­ new_priority is a value between 0 and 31 or a
symbolic constant:

­ THREAD_PRIORITY_TIME_CRITICAL
­ THREAD_PRIORITY_HIGHEST
­ THREAD_PRIORITY_ABOVE_NORMAL
­ THREAD_PRIORITY_NORMAL
­ THREAD_PRIORITY_BELOW_NORMAL
­ THREAD_PRIORITY_LOWEST
­ THREAD_PRIORITY_IDLE

© Copyright Ian D. Romanick 2008

22-August-2008

Processor Affinity

⇨ Threads are typically scheduled to run on any
available processor, preferring the last processor
where it was scheduled

­ Has good cache performance
­ All things being equal, this is the best choice
­ In some applications, all things are not equal

­ And by “things” we mean threads

© Copyright Ian D. Romanick 2008

22-August-2008

Processor Affinity

⇨ Consider a system with two processors, two I/O
threads, and two compute threads

­ Depending on when threads are created, both
compute threads may end up on the same processor

­ Since the I/O threads are often idle, this is not optimal
­ If we could tell the system to schedule an I/O thread

and a compute thread on each CPU, we would win

© Copyright Ian D. Romanick 2008

22-August-2008

Processor Affinity

⇨ Two ways to modify affinity:
­ Specify the set of processors where a thread can be

scheduled
­ Specify the optimal or “ideal” processor for a thread

­ On some NUMA systems, this can also set the preferred
processor node

© Copyright Ian D. Romanick 2008

22-August-2008

Processor Affinity

⇨ Windows uses SetThreadAffinityMask to
set the mask of processors where the thread can
be scheduled:
DWORD_PTR SetThreadAffinityMask(
 HANDLE hThread,
 DWORD_PTR dwThreadAffinityMask);

© Copyright Ian D. Romanick 2008

22-August-2008

Processor Affinity

⇨ Set the ideal processor:
DWORD WINAPI SetThreadIdealProcessor(
 HANDLE hThread,
 DWORD dwIdealProcessor);

­ Windows will schedule the thread on that processor
whenever possible

­ MSDN entry is pretty vague as to what that means

© Copyright Ian D. Romanick 2008

22-August-2008

Processor Affinity

⇨ How to use?
­ Create threads in the “idle” state
­ Set initial affinity to separate I/O and compute threads
­ Start threads running

© Copyright Ian D. Romanick 2008

22-August-2008

Thread-Local Storage

⇨ Consider a fair lock implementation
­ Each waiting thread is added to a queue
­ When the lock is released, the first waiting thread

wakes up
­ If a thread tries to acquire the lock and the lock is held

or there are waiters, it is added to the end of the
queue

A B Cq

© Copyright Ian D. Romanick 2008

22-August-2008

Thread-Local Storage

⇨ Fair-lock queue contains each thread at most
once

­ Naive implementation is to allocate a node, add it to
the queue

­ Nodes are released when the waiter is removed from
the queue

­ This causes extra node management overhead
­ We really just want an node per thread that is persistent

A B Cq

© Copyright Ian D. Romanick 2008

22-August-2008

Thread-Local Storage

⇨ We want some sort of thread-local storage
­ Create a handle with a global ID
­ In each thread, associate some storage with that

handle
­ In the fair-lock implementation, it would be the node structure

­ Code that uses the TLS obtains the per-thread
storage using the handle

© Copyright Ian D. Romanick 2008

22-August-2008

Thread-Local Storage

⇨ Create a handle:
DWORD TlsAlloc(void);

⇨ Release a handle:
BOOL TlsFree(DWORD dwTlsIndex);

⇨ Set per-thread storage associated with handle:
void TlsSetValue(DWORD dwTlsIndex, void *data);

⇨ Get per-thread storage associated with handle:
void *TlsGetValue(DWORD dwTlsIndex);

⇨ See MSDN for more details
­ http://msdn.microsoft.com/en-us/library/ms686991(VS.85).aspx

http://msdn.microsoft.com/en-us/library/ms686991(VS.85).aspx

© Copyright Ian D. Romanick 2008

22-August-2008

Next week...

⇨ Common multi-threading problems
­ Dead-lock / live-lock
­ Priority inversion
­ Lock contention
­ Thread-safe libraries
­ Cache abuse / memory bandwidth

© Copyright Ian D. Romanick 2008

22-August-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

